
Eur. Phys. J. D 7, 503–513 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. The non-relativistic matrix elements and cross-sections of the radiative recombination for H-
like atoms are calculated by considering the retardation corrections up to the first order in αZ. These
corrections are evaluated for the transitions to the spherical states using recursion relations which lead to
fast and accurate calculations of the cross-sections.

PACS. 32.80.Fb Photoionzation of atoms and ions – 34.80.Kw Electron-ion scattering; excitation
and ionization

1 Introduction

In the radiative recombination process (RR) an ion cap-
tures a free incident electron and a photon is emitted.
This process is the inverse of the photoeffect and the RR
differential and total cross-sections can be derived by de-
tailed balance from the photoeffect ones. For this reason,
we compare the results obtained in this paper with oth-
ers reported in literature for either the photoeffect or the
radiative recombination.

The photoeffect has been treated since the early days
of quantum mechanics and the corresponding theoretical
studies developed simultaneously with the improvement
of the atomic models. The pioneering theoretical study
of the radiative recombination process was carried out in
the twenties by Kramers [1], Oppenheimer [2], Wessel [3],
Stueckelberg and Morse [4], Stobbe [5]. Stobbe gave the
most extensive study by deriving, in the dipole approxima-
tion, the expression for the RR cross-section for arbitrary
hydrogenic (n, l) states. Since then, the theoretical efforts
intensified in the 50’s because of the importance of this
process for the plasma physics with applications in the
astrophysics and thermonuclear fusion, for the accelerator
physics, mesonic-atom physics and antimatter production
[6–16].

There is some scarcity of experimental data on the
RR but many information can be derived from the exper-
iments on the photoeffect, studied extensively in the con-
text of photoabsorption and photoelectron spectroscopy.
After the first experimental identification of the radiative
recombination [17], this process has been more extensively
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studied both experimentally and theoretically. Concern-
ing the recombination of one electron with bare ions, de-
scribed by the simplest theoretical models, the first ex-
perimental results have become available only in the 90’s
for the cases of He2+, C6+, F9+ ions [18,19]; these data
showed a good agreement with the Stobbe formulae [5].
Other experiments with highly charged partially stripped
atoms were accomplished and were in a reasonable agree-
ment with the theoretical results for RR on bare ions with
a judicious choice of the effective charge [20–22]. Recently,
data for the recombination on D+ and He+ were obtained
[23]. These experiments were done for low relative energies
(up to about 10 eV). At such low center-of-mass electron
energies the nonrelativistic dipole approximation is suc-
cessful. This explains the considerable work done to obtain
from Stobbe formulae [5] simple low energy analytical re-
sults. Thus, detailed studies of the cross-section formulae
in the dipole approximation were performed, their main
goal being the calculus efficiency, namely the fast compu-
tation, with minimum errors, of as many as possible shell
contributions to the total cross-sections [15,16,23].

In all these direct studies on RR, whether experimental
or theoretical, the main task was to measure or to com-
pute the total cross-section corresponding to one shell or
summed over all shells. Rather lately the interest for the
detailed transitions on (n, l) subshells has appeared, espe-
cially since the experiments concerning the state-selective
laser-induced RR process became available [24,25]. Thus,
Pajek and Schuch [26] studied systematically the state se-
lective RR of the free electrons with bare ions in the low-
energy limit. In the same paper a detailed discussion of
the emitted photon angular distribution was given using
dipole approximation, i.e. omitting the retardation which
does not produce observable effects for such low energies.
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The retardation corrections are the contributions to
the matrix elements and differential cross-sections due to
the different nonzero powers of k·r occurring in the expan-
sion of the photon plane wave; replacing the exp (−ik · r)
by unity gives, as it is well-known, the standard dipole
approximation. These retardation corrections are propor-
tional to powers of αZ. Their effect is the shift of the pho-
ton angular distribution peak towards forward or back-
ward with respect to the direction of the incident electron
in RR process. A corresponding shift of the photoelec-
tron angular distribution peak occurs for the photoeffect.
Classically, this effect is related to the tendency of the ra-
diation of an accelerated charged particle to concentrate
towards the velocity direction with increasing particle en-
ergy. In a semiclassical picture, the classical charged parti-
cle accelerated by the Colombian field of a nucleus, losing
energy by radiation, might be captured on a stationary or-
bit ceasing thus to radiate. A more subtle physical picture
was given by Sommerfeld [27] who showed that for the
K-shell photoeffect the retardation may be derived from
the momentum conservation law applied to the electron-
photon system. Moreover, considering the distribution of
the electron momentum in the bound state, Sommerfeld
accounted for the correct quantum result. This picture
may be extended to the photoeffect or the radiative re-
combination on the higher shells, some specific features of
these effects being explained by the characteristics of the
various bound state electron momentum distributions.

Particularly, the second term of the photon plane wave
expansion yields correction only to the emitted photon dif-
ferential cross-section. The αZ term does not contribute to
the total cross-section (its integral over angles vanishes).
The first term beyond dipole approximation is ∼ (αZ)2

being of the same order as the first relativistic correction.
In fact, the total cross-section is quite well described in
nonrelativistic dipole approximation, for a large range of
atomic number Z (Z between 1 and 80) and incident pho-
ton energy up to 50 keV [28,29].

Remarkable theoretical results on the radiative recom-
bination for completely or partially ionized atoms in the
nonrelativistic approach were reported by Belkić et al. in
a larger context [30–32]. They gave exact nonrelativistic
formulae, including thus all the retardation corrections.
These formulae are expressed by polynomial hypergeo-
metric Appell functions of two arguments or polynomial
hypergeometric Lauricella functions of three arguments.
However, only the first order retardation correction to the
differential cross-section, in the nonrelativistic approach,
is physically useful because the higher order terms, i.e.
∼ (αZ)n, with n ≥ 2, are of the same order of magnitude
as those due to the relativistic corrections.

The first retardation correction was considered for the
photoeffect long ago by Sommerfeld and Schur [33,34] who
derived simple analytical formulae for the cross-sections
corresponding to the K and L shells of an H-like atom.
In the 60–70’s the retardation problem was reconsidered,
both experimentally and theoretically. The most extensive
experiments were firstly reported for the krypton and neon
photoeffect [35,36], for an energy range between 100 eV

and 2000 eV; this is a range where the retardation ef-
fects become observable and the nonrelativistic formula-
tion works well.

A detailed discussion of the retardation effects, based
on numerical calculations performed within the framework
of the relativistic Dirac and Hartree-Fock-Slater formula-
tion, was given by Tseng et al. [37]. Although the atomic
photoeffect was the subject of this paper, their results are
also useful for the RR studies and we recover some of them
in the particular point Coulomb case.

The aim of the present paper is the study of the first
order correction to the RR of the free electrons with bare
ions. We give analytical formulae for the corrected differ-
ential cross-sections in closed forms in terms of Gordon’s
integrals for the RR on arbitrary (n, l) subshells. We make
a discussion of the dependence of the results upon Z, inci-
dent electron energy and n, l quantum numbers. We hope
our results to be useful for planing and analyzing experi-
ments for both RR and photoeffect.

This article is organized as follows: in Section 2 we
provide some of the theoretical background needed for our
treatment. This part contains basic relations and formu-
las. In Section 3 we obtain the corrected differential cross-
section formula expressed in terms of Gordon integrals.
The method for the computation of these Gordon inte-
grals is detailed in the Appendix. Finally, in Section 4 we
make some concluding remarks and discussion.

2 General formulae

The nonrelativistic matrix element describing the tran-
sition from the state |κ〉 of the continuous spectrum to
the spherical bound state |n, l,m〉 with the emission of a
photon of polarization s and wave vector k is given by

Mnlm;κ(s) = s ·D(n, l,m;κ), (1)

D(n, l,m;κ) = −i~
∫

d3x e−ik·rΨ∗nlm(r)∇Ψκ(r) (2)

where κ is the wave vector of the incoming electron. The
bound state reads as follows

Ψnlm(r, θ, ϕ) = gnlmr
le−εrF (−n+ l + 1, 2l+ 2; 2εr)

× Pml (cos θ)eimϕ, (3)

gnlm =
(2ε)l+3/2

(2l+ 1)!

√
(2l + 1)(n+ l)!(l − |m|)!
8πn(n− l − 1)!(l + |m|)! ,

(4)

Pml (u) =
(−1)(|m|−m)/2(1− u2)

|m|
2

2ll!
dl+|m|(u2 − 1)l

dul+|m|
(5)

where ε = 1/na, a = ~2/Zmee
2 is the first Bohr radius

of an H-like atom and F (α, γ; z) is the confluent hyperge-
ometric function. The continuous spectrum eigenfunction
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is given by

Ψκ(r) =
∞∑
λ=0

fλ(κ)rλe−iκrF (in′ + λ+ 1, 2λ+ 2; 2iκr)

× Pl(cos θ), (6)

fλ(κ) =
iλ(2κ)λeπn

′/2

(2λ)!
Γ (λ+ 1− in′)

where the z-axis is chosen in the direction of the incoming
electron momentum and we use, throughout this paper,
the following notations:

n′ =
1
κa

=
1
q

=

√
|E1|
E

(7)

where E is the incident electron energy and E1 = −Z2Ry
is the ground-state energy of the atom.

By introducing in equation (2) the series expansion of
exp(−ik · r) one obtains the multipole expansion of the
matrix element represented by an αZ power series. In this
expansion we retain only the first two terms, resulting thus
the approximation

D(n, l,m;κ) = D(0)(n, l,m;κ) + D(1)(n, l,m;κ) (8)

where

D(0)(n, l,m;κ) = −i~
∫

d3xΨ∗nlm(r)∇Ψκ(r), (9)

is the standard dipole approximation and

D(1)(n, l,m;κ) = −~
∫

d3x (k · r)Ψ∗nlm(r)∇Ψκ(r) (10)

represents the first retardation correction.
The angular differential cross-section of the RR on the

spherical state (n, l,m) for a nonpolarized emitted pho-
ton is

dσnlm(κ)
dΩ(k)

=
1

4π
r2
0

α~2a

1 + n2q2

n2q

∑
s

|s ·D(n, l,m;κ)|2.

(11)

In this paper we use for D the approximation (8), and,
consequently, in the right hand side of equation (11) only
the terms up to the first order in αZ must be retained.

3 Matrix elements and cross-sections

By specifying in the following only the argument m of
the matrix element, the first approximation of the matrix

element may be written as

D(0)(m) = −imeω

∫
d3xΨ∗nlm(r)rΨκ(r) (12)

= −imeωgnlm

∞∑
λ=0

fλ(κ)

×
∞∫

0

dr rl+λ+3e−(ε+iκ)rF (−n+ l + 1, 2l+ 2; 2εr)

× F (in′ + λ+ 1, 2λ+ 2; 2iκr)

×
π∫

0

dθ sin θ

2π∫
0

dϕe−imϕ r
r
Pλ(cos θ)Pml (cos θ)

and the first retardation correction to the dipole matrix
element is given by

D(1)(m) = −~kgnlm
∞∑
λ=0

fλ(κ)

2π∫
0

dϕe−imϕ

×
∞∫

0

dr rl+λ+3e−(ε+iκ)rF (−n+ l+ 1, 2l+ 2; 2εr)

×
π∫

0

dθ sin θPml (cos θ)
[

sin θγ cos (ϕ− ϕγ) sin θ

+ cos θγ cos θ
]{r
r

[(λ
r
− iκ

)
F (in′ + λ+ 1, 2λ+ 2; 2iκr)

+
iκ(in′ + λ+ 1)

λ+ 1
F (in′ + λ+ 2, 2λ+ 3; 2iκr)

]
Pλ(cos θ)

−eθ sin θ
1
r
F (in′ + λ+ 1, 2λ+ 2; 2iκr)

d
d cos θ

Pλ(cos θ)
}

(13)

where

~ω = c~k = ~2(1 + n2q2)/(2men
2a2) (14)

is the emitted photon energy,

eθ = cos θ cosϕex + cos θ sinϕey − sin θez

and θγ , ϕγ are the photon emission angles.
By performing the integration over ϕ in equations (12,

13) we see that D(0) and D(1) are different from zero only
for m = 0, ±1 and for m = 0, ±1, ±2, respectively.

Because the order of the first nonzero term in the
αZ power series expansion of the matrix element is 0 for
|m| = 0, 1 and is 1 for |m| = 2, the first two terms of
the αZ power series of the cross-section correspond only
to |m| = 0, 1. So, according to the first order approxima-
tion, we retain in the matrix element D(1) only the terms
corresponding to m = 0, ±1.

In this approximation the only nonzero matrix ele-
ments are D

(0)
x (±1), D(0)

y (±1), D(0)
z (0) and

D(0)
x (1) = D(0)

x (−1) = iD(0)
y (1) = −iD(0)

y (−1). (15)



506 The European Physical Journal D

For the retardation corrections one obtains the relations

D(1)
y (0) = tanϕγ D(1)

x (0), D(1)
y (1) = −iD(1)

x (1),

D(1)
x (−1) = D(1)

x (1), D(1)
y (−1) = iD(1)

x (1),

D(1)
z (1) = e−iϕγ tan θγD(1)

x (1),

D(1)
z (−1) = D(1)

z (1)
∣∣
ϕγ→−ϕγ . (16)

Thus, our problem is reduced to the calculation of only
six terms and after carrying out the integration over θ,
we write separately the contributions from the λ = l, l ±
1, l ± 2 partial waves using the following notations:

D(0)
x (1) = π~kgl0D0x1,

D0x1 = fl−1D
(l−1)
0x1 + fl+1D

(l+1)
0x1 ;

D(0)
z (0) = π~kgl0D0z0,

D0z0 = fl−1D
(l−1)
0z0 + fl+1D

(l+1)
0z0 ;

D(1)
x (0) = π~kgl0D1x0 sin θγ cosϕγ ,

D1x0 = fl−2D
(l−2)
1x0 + flD

(l)
1x0 + fl+2D

(l+2)
1x0 ;

D(1)
x (1) = π~kgl0D1x1 cos θγ ,

D1x1 = fl−2D
(l−2)
1x1 + flD

(l)
1x1 + fl+2D

(l+2)
1x1 ;

D(1)
z (0) = π~kgl0D1z0 cos θγ ,

D1z0 = fl−2D
(l−2)
1z0 + flD

(l)
1z0 + fl+2D

(l+2)
1z0 ;

D(1)
z (1) = π~kgl0D1z0e−iϕγ sin θγ ,

D1z1 = fl−2D
(l−2)
1z1 + flD

(l)
1z1 + fl+2D

(l+2)
1z1 . (17)

The integrals over r in the terms D0x1, D0z0, D1x0, . . .
may be represented by the Gordon integrals [38]:

Jspγ (α, α′; η, η′) =

∞∫
0

e−
1
2 (η+η′)zzγ−1+s

× F (α, γ; ηz)F (α′, γ−p; η′z)dz, s, p ≥ 0. (18)

Obtaining this representation is an essential step in devel-
oping the analytical calculations. Finally, after a tedious
calculation, the matrix elements are represented by the
following five combinations of Gordon integrals:

J(l−2) = J04
2l+2(−n+ l + 1, in′ + l − 1; 2ε, 2iκ)

− in′ + l − 1
l − 1

J03
2l+2(−n+ l + 1, in′ + l; 2ε, 2iκ), (l ≥ 2),

J(l−1) = J12
2l+2(−n+ l + 1, in′ + l + 1; 2ε, 2iκ), (l ≥ 1),

J(l) = J20
2l+2(in′ + l+ 1,−n+ l + 1; 2iκ, 2ε)

− in′+l+1
l+1

J11
2l+3(in′+l+2,−n+l+1; 2iκ, 2ε), (l ≥ 0),

J(l+1) = J12
2l+4(in′ + l + 2,−n+ l + 1; 2iκ, 2ε), (l ≥ 0),

J(l+2) = iκ J04
2l+6(in′ + l + 3,−n+ l + 1; 2iκ, 2ε)

− (2l+ 5) J03
2l+5(in′ + l+ 3,−n+ l+ 1; 2iκ, 2ε), (l ≥ 0).

(19)

The results are listed below:

D
(l−1)
0x1 = − i

λc

2
√
l(l + 1)

(2l− 1)(2l + 1)
J(l−1),

D
(l+1)
0x1 =

i
λc

2
√
l(l+ 1)

(2l + 1)(2l+ 3)
J(l+1),

D
(l−1)
0z0 = − i

λc

4l
(2l− 1)(2l + 1)

J(l−1),

D
(l+1)
0z0 = − i

λc

4(l + 1)
(2l+ 1)(2l + 3)

J(l+1)

D
(l−2)
1x0 =

−2l(l− 1)iκ
(2l − 3)(2l− 1)(2l + 1)

J(l−2),

D
(l)
1x0 =

4(l2 + l − 1)iκ
(2l − 1)(2l+ 1)(2l + 3)

J(l)

D
(l+2)
1x0 =

−2(l + 1)(l + 2)
(2l + 1)(2l+ 3)(2l + 5)

J(l+2)

D
(l−2)
1z0 = −2D(l−2)

1x0 ,

D
(l)
1z0 =

2l2 + 2l− 1
l2 + l − 1

D
(l)
1x0,

D
(l+2)
1z0 = −2D(l+2)

1x0

D
(l−2)
1x1 =

2(l − 1)
√
l(l + 1) iκ

(2l − 3)(2l− 1)(2l + 1)
J(l−2)

D
(l)
1x1 =

2
√
l(l + 1) iκ

(2l − 1)(2l+ 1)(2l + 3)
J(l)

D
(l+2)
1x1 =

−2(l+ 2)
√
l(l+ 1)

(2l + 1)(2l+ 3)(2l + 5)
J(l+2) (20)

and

D1z1 = D1x1. (21)

Thus, the calculation of the Gordon integrals involved in
the matrix elements remains the main task. In the Ap-
pendix we present a method for the evaluation of these
integrals based on a set of functions which satisfy simple
recursive relations.

The polarization sums are given by∑
s

∣∣s ·D(0)
∣∣2 = π2~2k2g2

l0

{∣∣D0z0

∣∣2 sin2 θγ

+ 2Re
[
D∗0z0(D1z0 −D1x0)

]
cos θγ sin2 θγ

}
, (22)
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∑
s

∣∣s ·D(1)
∣∣2 = π2~2k2g2

l0

{∣∣D0x1

∣∣2(2− sin2 θγ)

+ 4Re
[
D∗0x1D1x1

]
cos θγ

− 2Re[D∗0x1(D1x1+D1z1)] cos θγ sin2 θγ
}
.

Denoting a global factor by

Qnl =
πr2

0

4α
g2
l0k

2(1 + n2q2)
n2qa

,

we may write the differential cross-section for the recom-
bination on the (n, l) subshell in the following form:

dσnl
dΩ

=Qnl
[
Anl+Bnl

(
1+γnlcos θγ

)
sin2θγ+Cnlcos θγ

]
(23)

where

Anl = 4
∣∣D0x1

∣∣2, Bnl =
∣∣D0z0

∣∣2 − 2
∣∣D0x1

∣∣2,
Cnl = 8Re

[
D∗0x1D1x1

]
, (24)

γnl =
2
Bnl
Re
[
D∗0z0

(
D1z0 −D1x0

)
− 4D∗0x1D1x1

]
.

As it is seen from the last equations, the first retarda-
tion correction contributes with terms containing the fac-
tor cos θγ . This shape of the corrected cross-section was
predicted already by Tseng et al. [37] using general ar-
guments, but no explicit expressions were given for the
coefficients Anl, Bnl, ... except for the results obtained by
Sommerfeld and Schur [33] and Schur [34] for the K and L
shells. From the equations (20, 24) we see that all the co-
efficients An0 and Cn0 are zero, the only remaining terms
being those proportional to sin2 θγ and cos θγ sin2 θγ . We
point out that for the analytical or numerical calculations
it is useful to factorize fl and ρin′ in equations (17) with
the following contribution to the global factor in the cross-
section

|flρin′ |2 =
2π(2κ)2l

[(2l)!]2
Π2
l exp[− 4

q arctan (nq)]

q(1− e−2π/q)
,

Πl =


l∏

s=1

√
s2 + n′2, l > 0

1, l = 0
.

4 Results and discussion

Equations (23) were used to create a short computer pro-
gram that efficiently calculates the angular distributions
for arbitrary values of (n, l) including the first order re-
tardation corrections.

The precision of our calculations is insured by the sta-
ble character of the calculation of the Y (k,γ)

j − functions
defined in the Appendix. However, for very high values of
(n, l) the calculation using the equations (20) is stopped
due to computing overflow. Our tests show that, for a

given n, the overflow is associated with the very small
cross-section values corresponding to high values of l but
these cases may be eliminated from the calculations. The
computing overflows are eliminated even for n of the or-
der of a thousand by imposing a very weak condition like
ignoring those values of l for which the integrated cross-
section σnl is smaller then 10−30σn0.

The cross-section for the transition to the (n, l) sub-
shell is given by

σnl =
4π
3
Qnl [3 Anl + 2 Bnl] . (25)

To compute the cross-section σn =
∑
l σnl for the tran-

sition to the n shell, we point out that it is much more
suitable to use the sum over the cross-sections correspond-
ing to the transitions in the Stark states [29],

σn(κ) =
28π2r2

0e−(4/q) arctannq

3αq2(1 + n2q2)(1− e−2π/q)

×
n−1∑
j=0

[
(1 + n2q2)

(
Yj + Yj−1

)2 + 4
(
n− j − 1
j + 1

)
Y 2
j

]
(26)

where Yj(ρ) = Y
(1,2)
j (ρ). Our numerical tests, using also

asymptotic formulae for higher values of n, proved that
the formula (26) is characterized by a very high numerical
stability and can be successfully used even for n of the
order of one thousand. For example, for q = 0.5 and n =
8000 the asymptotic formula for the Gaunt factor given
by equation (56) of [29] and the formula (26) give values
of σn with 5 coincident digits.

In Table 1 we represent the contributions to the total
cross-section σ =

∑∞
n=1 σn of the different n-shells by the

ratios σ(N)/σ where

σ(N) =
N∑
n=1

σn. (27)

The total cross-section σ is calculated by the formula

σ =
n0∑
n=1

σn +
n1∑

n=n0+1

σ(a)
n +

∞∫
n1+1

σ(a)
n dn (28)

where in the first sum σn is given by equation (26) and for
σ

(a)
n in the second sum and in the integral the asymptotic

formula for the Gaunt factor [39] is used. The values for
n0 and n1 are chosen such that a given precision for σ
is assured. In this table are also given the values of the
incident electron energy for given value of q2 and various
values of the atomic number Z (Z = 1, 26, 42). One may
see from Table 1 that at low incident electron energies
the high n values give notable contributions to the total
cross-section. Although, for a given Z, these contributions
decrease when the incident electron energy increases, an
examination of Table 1 shows that in the considered en-
ergy range, where the nonrelativistic approach is valid, at
least the first ten shells must be considered.
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Table 1. The weights σ(N)/σ, σ(N) =
PN
n=1 σn, representing the contributions of the first N shells to the total cross-section σ

of the radiative recombination with the bare ions in the dipolar approximation. In the last three columns are indicated the values
of the incident electron energy corresponding to the values 1, 26 and 43 of the atomic number Z for given ratio q2 = E/|E1|.
The number in parentheses is the power of ten multiplying the entry.

q2 σ1 (barns)
σ(1)

σ

σ(2)

σ

σ(3)

σ

σ(4)

σ

σ(5)

σ

σ(10)

σ
E(1) (keV) E(26) (keV) E(42) (keV)

0.01 16674 0.31 0.47 0.58 0.66 0.72 0.87 1(−4) 0.09 0.24

0.05 3249 0.42 0.62 0.74 0.81 0.86 0.95 7(−4) 0.5 1.2

0.1 1573 0.48 0.69 0.80 0.87 0.90 0.97 1(−3) 0.9 2.4

0.5 251 0.65 0.84 0.91 0.94 0.96 0.99 7(−3) 4.6 12.0

1.0 99 0.72 0.88 0.94 0.96 0.97 0.99 1(−2) 9.2 24.0

1.5 54 0.75 0.90 0.95 0.97 0.98 0.99 2(−2) 13.8 36.0

2.0 35 0.77 0.91 0.95 0.97 0.98 1.00 3(−2) 18.4 48.0
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Fig. 1. The branching ratios p(n, l) = σnl/σn for the population of the (n, l) subshells versus incident electron energy parameter

q =
p
E/|E1| for n = 3, 4. The curves corresponding to the various subshells are labelled by the quantum numbers n, l.

Let us define the branching ratio for the population of
the (n, l) subshell as

p(n, l) =
σnl
σn
· (29)

Figure 1 shows the q-dependence of the branching ratios
for n = 3 and n = 4 and the contributions of the transi-
tions for different (n, l) subshells. For q → 0 the dominant
contribution is given by the (n, n/2) subshell for even n
or (n, (2n+ 1)/2) subshell for odd n and with increasing
q the transition to the s state becomes dominant.

Figure 2 shows the corrected angular distribution
summed on the first N shells for two N values: N = 1
and N = 100, for a given q2 value. The first retarda-
tion correction depends on q2 and also on Z. In Figure 2

three curves corresponding to Z = 26, 42 and 74 are plot-
ted. The results obtained with the dipole approximation
are also plotted (dotted line); as one knows, these depend
only on q2. The contributions to the sum from higher n
shells are significant, as it is seen by comparing the curves
corresponding to the two different values of N .

Based on these observations we can conclude that some
efforts are justified in order to obtain a detailed descrip-
tion of the radiative recombination for arbitrary (n, l) sub-
shells in spite of the fact that experimental information on
the relative contributions from these individual states for
RR with bare ions is scanty, especially for intermediate
energies.

We have compared our angular distributions for the
K shell recombination with the results of the exact
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Fig. 2. Comparison between the angular distribution for the
recombination on the K-shell and that corresponding to the
transitions on the first 100 shells for different values of
the atomic number Z and a given value of the incident elec-
tron energy parameter q2 = E/|E1| (Eq. (7)). The results cor-
responding to the conventional dipole approximation, which
depend only on q2, are represented by points and those in-
cluding the first retardation corrections are represented by full
lines.

relativistic numerical calculations from the tables for the
relativistic K shell photoeffect [40]. There is a very good
agreement for Z ≤ 42 and E ≤ 10 keV. We cannot per-
form such a comparison for higher transitions because of
the lack of available relativistic numerical data for angular
distributions in these cases.

Because the cross-section for the recombination is pro-
portional to the photoeffect one, some ratios as for exam-
ple (4π/σ)dσ/dΩ and (dσ/dΩ)/(dσ/dΩ)θγ=π/2, are the
same for both processes. Moreover, the comparisons of
theoretical and experimental results for such ratios are
preferable [37].

We report the analytic expressions for the recombina-
tion (photoeffect) on the first three shells for

4π
σnl

dσnl
dΩ

= anl + bnl(1 + γnl cos θγ) sin2 θγ + cnl cos θγ .

(30)

The coefficients anl, bnl, cnl and γnl,expressed in terms of
the parameter1

γ = |En|/Eγ , (31)

1 We choose this parameter with the view of a direct com-
parison with the results of Sommerfeld and Schur.

En being the bound state energy and Eγ− the photon
energy, are

a10 = 0, b10 =
3
2
, γ10 = 4β, c10 = 0;

a20 = 0, b20 =
3
2
, γ20 = 4(1− γ)β;

a21 =
3

8γ + 3
, b21 =

12γ
8γ + 3

,

γ21 =
11γ + 1

2γ
β, c21 =

6
8γ + 3

β;

a30 = 0, b30 =
3
2
, γ30 = −4(4γ − 3)

4γ + 3
β, c30 = 0;

a31 =
3(3γ + 1)

28γ2 + 26γ + 3
, b31 =

3γ
2

28γ + 17
28γ2 + 26γ + 3

,

γ31 = − 4
γ

24γ3 − 24γ2 − 26γ − 1
28γ + 17

β,

c31 = −6
4γ2 − 2γ − 1

28γ2 + 26γ + 3
β;

a32 =
9
2

1
6γ + 5

, b32 =
3
4

12γ + 1
6γ + 5

,

γ32 = 8
84γ2+32γ+1

(12γ+1)(8γ+1)
β, c32 = 18

6γ+1
(8γ+1)(6γ+5)

β.

(32)

The results (32) for the K and L shells may be compared
with the formulae given by Sommerfeld and Schur [33]
and Schur [34] respectively. As far as we know, the M
shell analytical result was firstly reported in [41].

By considering the incident electron moving in the field
of an effective nuclear charge and expanding the bound
state wave function of an atom on the basis of Slater-type
orbitals [42], it may be shown that the cross-sections for
the recombination, as well as for the photoeffect, with the
partially stripped atoms with the first retardation correc-
tions are represented by expressions of the same form as
in the equation (23) [43]. As a test, we fitted the exper-
imental data obtained by Krause [35] for the normalized
angular distribution of Kr 3d photoelectrons, correspond-
ing to 1.2536 keV for the incident photon energy, by

J =
100(

dσ/dΩ
)
π/2

dσ
dΩ

= 2.35+67.65(1+0.22 cosθ) sin2 θ+5.14 cosθ (33)

that is by a function of the form (23). The results ob-
tained with this formula almost coincide with the rel-
ativistic Hartree-Fock-Slater ones of Tseng et al. [37]
which agree with experimental results. These agreements
argue for the validity in this case of the cross-section
formula only with the first order retardation correction
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Fig. 3. Comparison of the normalized angular distribution J(θ) = 100
�
dσ/dΩ

�
(θ)/[

�
dσ/dΩ

�
(π/2)] of Ne 2p (a, b), Kr 3p (c),

Kr 3d (d) photoelectrons between the experimental data (points) of Krause [35], the relativistic Hartree-Fock-Slater results of
Tseng et al. [37] (crosses) and the results from formula (23) for J(θ) in the corresponding bare ions cases (full line).

(for this example, and also for the following ones, we point
out that we obtained data by scanning the graphics from
[37] and our representations might be affected by some er-
rors; however, we believe that these possible errors do not
affect the conclusions of the graphical comparisons done
in the present paper).

It is known that in the case of non-bare ions at low en-
ergies a large part of the total cross-section is determined
by the transitions to the excited states. The final states
have high angular momentum numbers l and practically
only the region of space outside the core contributes to
the matrix element, so that the total cross-section will be
determined by the total ion charge. Some tests for low rela-
tive energies in the case of non-bare ions with one residual

electron show an excellent agreement between the exper-
imental data and the results of the calculations based on
the theory of RR with bare ions using an effective charge
Zeff equal to the total ionic charge [20,44]. By increas-
ing the incident electron energy (or the photon energy in
the case of the photoeffect) it is expected to obtain reason-
able results using an intermediate effective charge situated
between the total ionic charge and the nuclear one. For
more complex non-bare ions it is not sure that the bare
ion model can be always successfully used. However, us-
ing the formula (23) for the calculation of the normalized
angular distribution J(θ) for the atomic photoeffect, we
obtain some reasonable results compared with the experi-
mental ones. Figure 3 shows for four cases the comparisons
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Fig. 4. Comparison of the normalized angular distribution J(θ) = 100
�
dσ/dΩ

�
(θ)/[

�
dσ/dΩ

�
(π/2)] of Ne 2p (a) and Kr 3d

(b) photoelectrons between the experimental data (points) of Krause [35], the relativistic Hartree-Fock-Slater results of Tseng
et al. [37] (crosses) and the results from a formula of the type (23) corresponding to Slater-type orbitals [43] for various effective
charges: 7 and 8 for neon and 12 and 14 for krypton (full lines).

of the normalized angular distributions of photoelectrons
between the experimental data of Krause [35], the rela-
tivistic Hartree-Fock-Slater results of Tseng et al. [37] and
our results obtained by using equation (23) and consider-
ing the ratios of the corresponding bare ions cross-sections.
These results could be explained by the approximate va-
lidity in these cases of the property that at high energies
the screening manifests only through wave function nor-
malizations [37]. Moreover, the formula (23) with modified
coefficients obtained in [43] by using Slater-type orbitals
gives excellent results in the above cases for intermediate
values of Zeff . Thus, for example, the theoretical results
of Tseng et al. [37] for the normalized angular distribu-
tion J(θ) of Ne 2p photoelectrons are well reproduced for
Zeff = 8 and a better agreement with the experimental
values is achieved for 7 ≤ Zeff < 8. Similar results are
obtained for the Kr 3d photoelectrons. In Figure 4 some
of these results, which will be justified and detailed else-
where, are shown.

An interesting feature of the formula (23), not exten-
sively studied but already pointed out by Tseng et al. [37],
is that, for some (n, l) transitions, by decreasing the in-
cident electron energy (the incident photon energy in the
case of the photoeffect), the photon (photoelectron) an-
gular distribution, first peaked forward, will shift towards
90◦ and begin to peak backward [37]. We note that, at
least in the point Coulomb case, the angle θmax, corre-
sponding to the distribution peak, reaches the value 90◦
for a Z independent value γ0 of the parameter γ defined
by the equation (31). Figure 5 represents the variation
of cos θmax versus β for Z = 42, l = 0 and various n.
For Z = 42 the magnitude of the displacement backward
from 90◦ is about 0.5◦. This displacement increases with
increasing Z so that, for example, for Z = 74 it is about 1◦.
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Fig. 5. The forward and backward shifts of the maximum of
the RR cross-section. The function cos θmax is plotted against
β = v/c where v is the velocity of the incident electron.

This peaking towards backward is not present for all tran-
sitions. Thus, based on an analysis of the analytical ex-
pressions of the corresponding cross-sections, we remark
that this effect appears, for example, for the transitions
(n ≥ 3, l = 0), (n ≥ 7, l = 1), (n ≥ 15, l = 2) but
we could not give a general rule. However, this backward
shift remains a pure theoretical problem because a too
high angular resolution is necessary for an experimental
evidence.
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Appendix: Gordon integrals calculation

Using the recurrence relations [45]

Jspγ (α, α′; η, η′) =
γ − 1
η

×
[
Js,p−1
γ−1 (α, α′; η, η′)− Js,p−1

γ−1 (α− 1, α′; η, η′)
]
,

Js+1,0
γ (α, α′; η, η′) =

4
η′2 − η2

×
{[γ

2
(η′ − η)− η′α′ + ηα− ηs

]
Js0γ (α, α′; η, η′)

+ s(γ − 1 + s− 2α)Js−1,0
γ (α, α′; η, η′)

+ 2αsJs−1,0
γ (α+ 1, α′; η, η′)

}
, (A.1)

all the Gordon integrals in equations (19) may be ex-
pressed by

J00
γ (−j, in′ + k; 2ε, 2iκ) = J00

γ (in′ + k,−j; 2iκ, 2ε)

=
(−1)jΓ (γ)ρin′+k

(j + 1)(ε+ iκ)γ 2F1(−j, in′ + k, γ; 1− ρ2) (A.2)

where

ρ =
ε+ iκ
ε− iκ

=
1 + inq
1− inq

,

ρin′ = exp[−2
q

arctan(nq)], (A.3)

γ is a natural number and k an integer one [45].
Let us define the functions

Y
(k,γ)
j (ρ) = (j + 1)ρ−j 2F1(−j, in′ + k, γ; 1− ρ2),

j = −1, 0, 1 . . . (A.4)

which satisfy the recursion relation

Y
(k,γ)
j (ρ) = − 2(j + 1)

j(j + γ − 1)

×
[
j+k−1+

2(n−j−k+1)
1 + n2q2

]
Y

(k,γ)
j−1 (ρ)

+
(j + 1)(γ − 2k)
j(j + γ − 1)

ρ−1Y
(k,γ)
j−1 (ρ)− j + 1

j + γ − 1
Y

(k,γ)
j−2 (ρ)

(A.5)

and the initial conditions

Y
(k,γ)
−1 (ρ) = 0, Y (k,γ)

0 (ρ) = 1.

For γ = 2k, these are the Y kj (ρ) functions used in [29,41].
Let us observe that these functions do not differ es-

sentially from the Jacobi polynomials used by Baratella

et al. [11]. Indeed, the functions Y (k,γ)
j may be expressed

in terms of Jacobi polynomials P (α,β)
a (z) using the relation

Y
(k,γ)
j (ρ) = (j + 1)

−γ
j

−1(
ρ2 − 1
ρ

)j

× P
(−j−in′−k,−j+in′+k−γ)
j

(
ρ2 + 1
ρ2 − 1

)
. (A.6)

So, our recursion relations (A.5) are of the same type with
those used by Baratella et al.

As a result, the quantities J(l−2), . . . , J(l+2) can be ex-
pressed as combinations of the Y (k,γ)

j (ρ):

J(l−2) = − (2l+ 1)! F
16

{ 1
n− l Y

l−1,2l−2
n−l−1

+
1

n− l + 4
Y l−1,2l−2
n−l+3 +

4
n− l + 3

Y l−1,2l−2
n−l+2

+
6

n− l + 2
Y l−1,2l−2
n−l+1 +

4
n− l + 1

Y l−1,2l−2
n−l

−2(l−1+in′)(1+inq)
(l − 1)(1 + n2q2)

[ 1
n−lY

l,2l−1
n−l−1+

1
n−l+3

Y l,2l−1
n−l+2

+
3

n− l + 2
Y l,2l−1
n−l+1 +

3
n− l + 1

Y l,2l−1
n−l

]}
J(l−1) =

na(2l+1)!F
2(1+n2q2)2

[ 1
n−lY

l,2l
n−l−1−

1
n−l+2

Y l,2ln−l+1

]
,

J(l) =
2i(na)2(2l+ 1)! F
(n− l)q(1 + n2q2)3

Y l+1,2l+2
n−l−1 ,

J(l+1) =
ia(na)2(2l + 3)! F

2(n− l)q(1 + inq)2(1 + n2q2)2

×
[
ρ2 Y l+2,2l+2

n−l−1 − Y l,2l+2
n−l−1

]
,

J(l+2) =
−ia3(2l + 5)! F

16(n− l)q3(1 + inq)4

×
[
Y l−1,2l+2
n−l−1 −ρ4Y l+3,2l+2

n−l−1 +2ρ3Y l+2,2l+2
n−l−1 − 2ρY l,2l+2

n−l−1

]
(A.7)

where F is a common factor

F =
(−1)n+l(na)2l+2ρin′

(1 + n2q2)l−1
· (A.8)

Let us note that the asymptotic formulae for the elec-
tric dipole matrix elements and cross-sections for q → 0
reported in [26] can be obtained from the present paper
results using the following asymptotic relations:

Y
(k,γ)
j (ρ) ∼ (j + 1) F (−j, γ; 4n),
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Y
(l+2,2l+2)
n−l−1 (ρ)− Y (l,2l+1)

n−l−1 (ρ)

∼ 4in(n− l)(n− l − 1)
l + 1

F (−n+ l + 2, 2l+ 3; 4n),

(ρ2 − 1)Y (l+2,2l+2)
n−l−1 (ρ)

∼ 4in(n− l)q F (−n+ l + 1, 2l+ 2; 4n). (A.9)
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